
 Slender Security Assessment
 Report

 July 2024
 Prepared for Slender

 1

 Prepared for
 Slender

 Table of content

 Project Summary ... 4
 Findings Summary .. 6
 C-1 Users can combine borrow + withdraw to open positions with arbitrary (positive) NPV 7
 C-2 Transfer- and Burn-on-zero can cause liquidation to revert ... 9
 C-3 Stellar’s resource limit can block liquidations ... 12
 C-4 Liquidating small positions is not incentivized .. 14
 C-5 Incorrect rounding enables an attacker to drain funds from the protocol ... 16
 H-1 Liquidator can seize a bad position’s collateral without repaying any of its debt 18
 H-2 Lenders can be immediately liquidated once the protocol is unpaused ... 20
 H-3 TWAP price calculation can be incorrect .. 21
 M-1 The formula for NPV in the technical specification is unclear .. 23
 M-2 Precision loss issues: division-before-multiplication .. 25
 M-3 Precision loss issues: double decimal conversion ... 28
 M-4 Centralization Risk ... 29
 M-5 There is no backup price feed .. 30
 M-6 There is no stale price check ... 31
 M-7 The protocol lacks circuit breakers (such as min/max prices) .. 33
 L-1 Some configuration parameters lack input validation .. 34
 I-1 Some of the names for the variables are misleading ... 37
 I-2 Replace 10i128.pow with 10i128.checked_pow .. 38
 I-3 Some inline comments are inaccurate/outdated .. 39
 I-4 Flash loan event sometimes include irrelevant info ... 41

 2

 3

 Project Summary
 Project Scope

 The original project files are:

 Repository Files Commits Compiler Platform

 eq-lab/slender/ All files in the repo (original) 93d1648 Stellar

 eq-lab/slender/ All files in the repo
 (audit-fixes)
 993fea5 Stellar

 Protocol Overview

 Slender is the first non-custodial lending/borrowing DeFi protocol on Stellar’s Soroban
 network. It uses a pool-based strategy that aggregates each user's supplied assets.
 Currently, the protocol supports only three markets (XRP, XLM, and USDC) but ultimately
 plans to expand in order to allow users to lend and borrow any asset that is supported on
 Soroban (including real-world assets).

 Lenders provide liquidity to a market in exchange for an s-token (i.e., essentially Slender’s
 LP-Token). These tokens accrue interest and reflect this accrual in their “price”. Users are
 able to borrow assets from the protocol via an over-collateralized loan which issues them
 a dToken (debt token). Each borrowing market has a floating interest rate, determined by
 the utilization of that market's assets. Utilization is capped (default value is 90% cap) to
 always keep a reserve for user withdrawals. Users cannot be both lenders and borrowers
 of the same asset.

 In addition, users can take flash loans from a market. When a flash loan is concluded, the

 4

https://github.com/eq-lab/slender/tree/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085
https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

 users have a choice between paying back the loan + fee or borrowing the funds in which
 case no fee is charged.

 For price information Slender’s plans to use SEP-40 compatible third-party oracles (e.g.,
 reflector) and apply TWAP to the price data points in order to mitigate operator error,
 market volatility, and manipulation risks.

 Project Goals
 Assess the security of the protocol via manual audit.

 5

 Findings Summary

 The table below summarizes the findings of the review, including type and severity details.

 Severity Discovered Acknowledged Code Fixed

 Critical 5 5 5

 High 3 3 3

 Medium 7 7 6

 Low 1 1 1

 Informational 4 3 3

 Total 20 19 18

 6

 Detailed Findings

 C-1 Users can combine borrow + withdraw to open positions with arbitrary
 (positive) NPV

 Severity: Critical Impact: High Likelihood: High

 Category: Logic, Economics Files: borrow.rs
 withdraw.rs
 finalize_transfer.rs

 Description

 In order to ensure the solvency of an over-collateralized borrowing & lending protocol, there is
 usually a minimal loan-to-value ratio that is required in order to open a position. In Slender’s case
 this is expressed via the initial_health configuration parameter which is checked in line # 105 of
 the do_borrow function:

 require_gte_initial_health (env , & account_data , amount_in_base) ? ;

 However, we note that the withdraw function only checks that users have positive NPV (line # 114
 for fungible assets and # 164 for real-world assets) but does not check that the NPV is greater or
 equal to initial health:

 require_good_position (env , & account_data);

 Similarly, the only check on users performing a transfer of s-tokens (in L# 72 of
 finalize_transfer.rs) is:

 require_good_position (env , & from_account_data);

 That is not a priori unreasonable, but effectively makes it possible to bypass said restriction
 which is imposed in the case of borrowing.

 7

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/borrow.rs
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/withdraw.rs
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/finalize_transfer.rs
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/borrow.rs#L105
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/withdraw.rs#L114
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/withdraw.rs#L164
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/finalize_transfer.rs#L72

 Exploit

 There are (at least) two possible attack vectors:
 1. An attacker can borrow and then withdraw in order to open “bad positions” (i.e., positions

 with less than the required initial health), causing the protocol to accumulate bad debt.
 2. An attacker can open a position with precisely the minimal required initial health and then

 withdraw and self-liquidate to extract money from the protocol.

 Recommendation

 Either have an intermediate “under-water” stage between healthy position and liquidation (i.e.,
 when 0 = liquidation_threshold < position_health < initial_health) where users are only allowed
 to deposit and repay but withdraw is disabled or require the user to cover a proportional part of
 their total debt when withdrawing their collateral.

 Customer Response

 Acknowledged and will fix.

 Fix Review

 The issue is successfully resolved in the commit 993fea5 by adding the missing check (i.e., see
 PR # 128).

 8

https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd
https://github.com/eq-lab/slender/commit/560a9cde8b47a013d9607b710a5a64b96f026ed0

 C-2 Transfer- and Burn-on-zero can cause liquidation to revert

 Severity: Critical Impact: High Likelihood: High

 Category: Logic, Economics Files: liquidate.rs

 Description

 The functions
 fn transfer_on_liquidation (e : Env , from : Address , to : Address , amount : i128) {

 verify_caller_is_pool (& e);

 require_positive_amount (amount);

 do_transfer (& e , from , to , amount , false);

 }

 And the functions (called in do_transfer):
 pub fn receive_balance (e : & Env , addr : Address , amount : i128)

 pub fn spend_balance (e : & Env , addr : Address , amount : i128)

 all panic if the amount parameter is non-positive. Thus, because of the line
 s_token . transfer_on_liquidation (who , liquidator , & liq_lp_amount);

 Liquidation would revert if liq_lp_amount turns out to be non-positive. The latter is computed
 as:

 let liq_lp_amount = FixedI128 :: from_inner (collat . coeff . unwrap ())

 . recip_mul_int (liq_comp_amount)

 . ok_or (Error :: LiquidateMathError) ? ;

 and
 // the same for token-based RWA

 let liq_comp_amount = calc_liq_amount (

 price_provider ,

 & collat ,

 hundred_percent ,

 discount_percent ,

 liq_bonus_percent ,

 safe_collat_percent ,

 initial_health_percent ,

 total_collat_disc_after_in_base ,

 9

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/liquidate.rs

 total_debt_after_in_base ,

) ? ;

 However, examining the code it is not hard to see that liq_comp_amount can be zero:

 let liq_comp_amount = price_provider . convert_from_base (& collat . asset ,

 safe_collat_in_base) ? ;

 let liq_comp_amount = safe_discount_percent

 . recip_mul_int (liq_comp_amount)

 . ok_or (Error :: LiquidateMathError) ? ;

 Ok (if liq_comp_amount . is_negative () {

 collat . comp_balance

 } else {

 collat . comp_balance . min (liq_comp_amount)

 })

 A similar issue occurs for burn as well in L# 176 :

 s_token . burn (who , & liq_lp_amount , & liq_comp_amount , liquidator);

 add_stoken_underlying_balance (env , & s_token . address, amount_to_sub) ? ;

 Recommendation

 In liquidations, allow transfer and burn of zero value to prevent reverts.

 Customer Response

 Acknowledged and will fix.

 Fix Review

 Fixed in commit 993fea5 by adding checks before transferring the underlying asset from the
 liquidator to the s-token contract address (L#295-297):

 if debt_comp_to_transfer > 0 {

 underlying_asset . transfer (liquidator , s_token_address ,

 & debt_comp_to_transfer);

 }

 10

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/liquidate.rs#L176
https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

 and before burning the debt token (L#299-301)
 if debt_lp_to_burn > 0 {

 debt_token . burn (who , & debt_lp_to_burn);

 }

 And the s-token (L#195-197):
 if liq_lp_amount > 0 && liquidator_part_underlying > 0 {

 s_token . burn (who , & liq_lp_amount , & liquidator_part_underlying ,

 liquidator);

 }

 11

 C-3 Stellar’s resource limit can block liquidations

 Severity: Critical Impact: High Likelihood: High

 Category: Blockchain Files: liquidate.rs

 Description

 Due to Stellar’s limit on I/O operations the liquidation function will revert as soon as the number
 of reserves the user is using as collateral or borrowing is sufficiently large (e.g., more than ~5) or
 even with 3 assets if the cost of oracle prices query (which can be proportional to the amount of
 TWAP records requested) is sufficiently large.

 Impact
 In such cases, users might be able to borrow assets from the protocol while being immune to
 liquidations, effectively creating bad debt and threatening the economic stability of the protocol.

 Recommendation
 Carefully check the cost of external calls like prices or underlying_asset.transfer in terms of I/O
 operations and adjust parameters accordingly. Implement logic that prevents a user from
 depositing or borrowing from too many different reserves.

 Customer Response
 Acknowledged and fixed. We added settings to limit the number of active reserves (see L# 12 of
 pool_config.rs) per user. Currently, it is set to 3, but when the Stellar blockchain increases their I/O
 limits, it will be reconsidered. Furthermore, we have updated the Oracle mock contract and
 reproduced the approach reflector’s price oracle (the oracle used for launch) implements when
 returning prices. After testing the most CPU/Memory intensive operations (liquidation with 3
 assets: 2 deposits + 1 debt, 1 deposit + 2 debts) we are going to reduce the number of latest
 price values for each asset to 3 for now (see L# 12 of price_feed.rs) .

 12

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/liquidate.rs
https://github.com/eq-lab/slender/blob/993fea5cec171e6f9cb493be1fd2d0166c49e2bd/interfaces/pool-interface/src/types/pool_config.rs#L12
https://github.com/eq-lab/slender/blob/993fea5cec171e6f9cb493be1fd2d0166c49e2bd/interfaces/pool-interface/src/types/price_feed.rs#L12

 Fix Review
 The problem is resolved in commit 993fea5 via the changes outlined above.

 13

https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

 C-4 Liquidating small positions is not incentivized

 Severity: Critical Impact: High Likelihood: High

 Category: Logic Files: liquidate.rs

 Description

 If a user’s borrowing balance exceeds their total collateral value (borrowing capacity) due to the
 value of collateral falling, or borrowed assets increasing in value, the liquidation mechanism
 implemented in Slender allows the liquidator to buy the borrower’s collateral (at a slightly better
 than market price). Hence, the liquidation bonus is essentially implemented here as a percentage
 of a bad position’s total collateral. However, we note that there is no restriction on opening
 positions with small values of collateral/debt as long as the user’s NPV is positive, so a bad actor
 can initiate a sybil attack on the protocol, accruing bad debt that can lead to protocol insolvency.

 Exploit
 An attacker opens multiple positions (via a sybil attack) with small collateral and debt values and
 each with a small total NPV and waits for them to deep into negative NPV on purpose. No
 liquidator actually has the incentive to liquidate each of the individual positions because the
 cost of submitting a liquidating transaction is greater than the potential gain. Thus the attacker
 manages to deliberately create bad debt for the protocol.

 Recommendation

 Disallow repayments/withdrawals which leave only a small debt/collateral (the precise definition
 of “small” here should probably be a configuration parameter determined via off-chain
 simulation).

 Customer response

 Acknowledged and will fix.

 14

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/liquidate.rs

 Fix Review
 The issue is resolved in the latest commit by adding the pool_config.min_collat_amount and
 pool_config.min_debt_amount parameters and the check

 require_min_position_amounts (env , & account_data , & pool_config) ? ;

 in line #158 of repay.rs , line #150 of borrow.rs , line #84 of finalize_transfer.rs , line #50 of

 set_as_collateral.rs , and line #187 of withdraw.rs .

 15

https://github.com/eq-lab/slender/blob/audit-fixes/contracts/pool/src/methods/repay.rs#L158
https://github.com/eq-lab/slender/blob/audit-fixes/contracts/pool/src/methods/borrow.rs#L150
https://github.com/eq-lab/slender/blob/audit-fixes/contracts/pool/src/methods/finalize_transfer.rs#L84
https://github.com/eq-lab/slender/blob/audit-fixes/contracts/pool/src/methods/set_as_collateral.rs#L50
https://github.com/eq-lab/slender/blob/audit-fixes/contracts/pool/src/methods/withdraw.rs#L187

 C-5 Incorrect rounding enables an attacker to drain funds from the protocol

 Severity: Critical Impact: High Likelihood: High

 Category: Arithmetic Files: withdraw.rs

 Description

 It is essential that rounding in DeFi would always favor the protocol. However, examining the code
 of withdraw.rs which handles the amount of underlying asset token to supply to the user and the
 corresponding amount of s-tokens to burn for fungible reserve types, we note that the key
 quantity s_token_to_burn is rounded down instead of up .

 let (underlying_to_withdraw , s_token_to_burn) =

 if amount >= underlying_balance {

 (underlying_balance , collat_balance)

 } else {

 let s_token_to_burn = collat_coeff

 . recip_mul_int (amount)

 . ok_or (Error :: MathOverflowError) ? ;

 (amount , s_token_to_burn)

 };

 Exploit
 In our case, the core idea behind the attack is elementary:
 assume that collat_coeff>1 , say for instance collat_coeff = 2 . Alice (the attacker) deposits
 amount=4 A-tokens, and receives amount_to_mint = 2 s-tokens in return. Alice then proceeds to
 request to withdraw 3 A-tokens from the reserve. Since s_token_to_burn = 3/2 = 1 , it can do it
 again, receiving a total of 6 = 3 + 3 A-tokens in the expanse of the protocol and other users.

 16

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/withdraw.rs#L61-L63
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/withdraw.rs#L61-L63

 Recommendation
 ● Fix the rounding error (i.e., in line # 62 of withdraw.rs - replace .recip_mul_int with

 .recip_mul_int_ceil).

 Customer response

 Acknowledged and will fix.

 Fix review

 Resolved in the latest commit. The entire computation above has now been refactored into the
 function
 pub fn get_lp_amount (

 env : & Env ,

 reserve : & ReserveData ,

 pool_config : & PoolConfig ,

 s_token_supply : i128 ,

 s_token_underlying_balance : i128 ,

 debt_token_supply : i128 ,

 amount : i128 ,

 round_ceil : bool ,

) -> Result < i128 , Error >

 which is called in withdraw.rs with the round_ceil l boolean flag set to true:
 } else {

 let s_token_to_burn = get_lp_amount (

 env ,

 & reserve ,

 & pool_config ,

 s_token_supply ,

 stoken_underlying_balance ,

 debt_token_supply ,

 amount ,

 true ,

) ? ;

 (amount , s_token_to_burn)

 17

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/withdraw.rs#L62

 H-1 Liquidator can seize a bad position’s collateral without repaying any of
 its debt

 Severity: High Impact: High Likelihood: Medium

 Category: Logic, Economics Files: liquidate.rs

 Description

 If a user’s NPV is sufficiently negative, it is possible for the liquidation bonus to reach 100%:
 let zero_percent = FixedI128 :: from_inner (0);

 let initial_health_percent =

 FixedI128 :: from_percentage (read_initial_health (env) ?) . unwrap ();

 let hundred_percent = FixedI128 :: from_percentage (PERCENTAGE_FACTOR) . unwrap ();

 let npv_percent = FixedI128 :: from_rational (account_data . npv ,

 total_collat_disc_after_in_base)

 . ok_or (Error :: LiquidateMathError) ? ;

 let liq_bonus_percent = npv_percent . min (zero_percent) . abs () . min (hundred_percent);

 Which would cause debt_in_base (and therefore total_debt_to_cover_in_base) to be
 zero:

 let total_debt_liq_bonus_percent = hundred_percent

 . checked_sub (liq_bonus_percent)

 . ok_or (Error :: LiquidateMathError) ? ;

 // . . .

 let debt_comp_amount = total_debt_liq_bonus_percent

 . mul_int (liq_comp_amount)

 . ok_or (Error :: LiquidateMathError) ? ;

 let debt_in_base = price_provider . convert_to_base (& collat . asset ,

 debt_comp_amount) ? ;

 18

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/liquidate.rs

 Recommendation

 We suggest fixing the mathematical/economical logic and the formula to account for this
 scenario.

 Customer response

 Acknowledged and will fix.

 Fix Review

 The latest commit 993fea5 fixes the issue.

 19

https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

 H-2 Lenders can be immediately liquidated once the protocol is unpaused

 Severity: High Impact: High Likelihood: Medium

 Category: Logic Files: liquidate.rs

 Description

 Slender contains the option to pause the protocol (by a privileged user rule) which correctly
 stops all protocol functions such as borrowing, depositing, liquidations, etc. However, once the
 protocol has been unpaused there is no “grace period” granted to lenders - if external price
 fluctuations have caused their position to fall under water they can be liquidated immediately
 without being given any chance to save their positions, which is unfair towards the users of the
 protocol.

 Recommendation

 Allow for AAVE-style “grace period 1 ” when returning from a pause state to normal operation (see
 e.g., PriceOracleSentinel for a reference implementation of this idea).

 Customer response

 Acknowledged. Will Fix.

 Fix Review
 Fixed in the latest commit 993fea5 .

 1 Note: during such “grace period” user operations such as deposits + repayments + flash loans
 should be allowed, but not withdrawals or token transfers.

 20

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/liquidate.rs
https://docs.aave.com/developers/core-contracts/priceoraclesentinel
https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

 H-3 TWAP price calculation can be incorrect

 Severity: High Impact: Medium Likelihood: High

 Category: Arithmetic Error, SEP-40 Oracle, Logic Files: price_provider.rs

 Description
 As often recommended, Slender prices assets using the time-weighted average price (TWAP) of
 multiple oracle price data points in order to reduce the risk of high asset volatility or malicious
 price spoofing. However, the function twap which implements the computation incorrectly
 assumes that the PriceData vector

 reported by the SEP-40 function prices

 is always sorted in descending order with respect to the timestamp:
 let price_curr = prices . get_unchecked (0); // @audit we implicitly assume

 this is the most current price.

 21

http://price_provider.rs/
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/types/price_provider.rs#L103-L167
https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0040.md

 let price_prev = prices . get_unchecked (i - 1);

 let price_curr = prices . get_unchecked (i); // @audit we implicitly assume

 here prices are sorted in descending order with respect to timestamp

 However, while this may be true for Reflector, it is not currently part of the trait defined by the
 SEP and would lead to an arithmetic error in general.

 Exploit Scenario

 Incorrect TWAP computations leads to systematically incorrect pricing of collateral and debt
 which would allow savvy arbitrage traders to drain the protocol.

 Recommendation

 Check to ensure that the prices received from the oracle are indeed sorted according to their
 timestamp in descending order.

 Customer response

 Acknowledged. Will fix.

 Fix Review

 This issue is resolved in commit 993fea5 .

 22

https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

 M-1 The formula for NPV in the technical specification is unclear

 Severity: Medium Impact: Low Likelihood: High

 Category: Documentation Files:

 D escription

 In Slender’s technical specification document , the formula for computing the net position value
 (NPV) is stated 2 as:

 However, examining the code in account_positions.rs, we see that NPV is actually computed as:

 Where the compound balance and debt are the product of the collateral (respectively, debt)
 coefficient with the balance (resp. debt):

 where collateral coefficient is computed via the formula

 and the debt coefficient is another name for the borrower’s accrued rate

 Impact

 2 Note: it is mentioned in the document that “NPV is also reduced when the interest rate is accrued: the debt term
 under the second sum is the real debt, just like the collateral term under the first sum term .”, however the meaning
 of “real” in this context is not made clear.

 23

https://www.notion.so/eq-lab/Slender-technical-specification-ac9644adb9284a8f88cfc0146990b119
https://www.codecogs.com/eqnedit.php?latex=NPV_%7Bspecification%7D%20%3D%20%5Csum_%7Bi%7D%20Collateral_%7Bi%7D%20%5Ccdot%20Discount_%7Bi%7D%20%5Ccdot%20Price_%7Bi%7D%20-%20%5Csum_%7Bj%7D%20Debt_%7Bj%7D%20%5Ccdot%20Price_%7Bj%7D#0
https://www.codecogs.com/eqnedit.php?latex=NPV_%7Bcode%7D%20%3D%20%5Csum_%7Bi%7D%20CCollateral_%7Bi%2Ct%7D%20%5Ccdot%20Discount_%7Bi%7D%20%5Ccdot%20Price_%7Bi%7D%20-%20%5Csum_%7Bj%7D%20CDebt_%7Bj%2Ct%7D%20%5Ccdot%20Price_%7Bj%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20CCollateral_%7Bi%2Ct%7D%20%3D%20CC%5E%7Bi%7D_t%20%5Ccdot%20Collateral_%7Bi%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20CDebt_%7Bj%2Ct%7D%20%3D%20DC%5E%7Bj%7D_t%20%5Ccdot%20Debt_%7Bi%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20CC%5Ei_%7Bt%7D%20%3D%20%5Cfrac%7Btotal%5C_debt_i%20%5Ccdot%20LAR%5Ei_%7Bt%7D%20%2B%20Balance_i%7D%7BsToken_i%20%5C%20supply%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=DC_t%5E%7Bj%7D%20%3D%20%20BAR_t%5Ej#0

 Traders relying on the formula published by Slender could be liquidated despite the fact that by
 the stated formula their positions are supposed to be healthy.

 Recommendation

 Correct the discrepancy between the code and the published documentation by changing the
 notation to explicitly include the collateral/debt coefficients, expanding the subsequent
 explanatory paragraph, and perhaps including some numerical examples to illustrate the
 computation.

 Customer response

 Acknowledged, will change the documentation to reflect this.

 Fix Review
 Fixed in the latest version of the technical specification.

 24

 M-2 Precision loss issues: division-before-multiplication

 Severity: Medium Impact: Medium Likelihood: Medium

 Category: Arithmetic Files:
 account_position.rs
 deposit.rs
 liquidate.rs
 withdraw.rs
 price_provider.rs

 Description

 The following computations are instances of division-before-multiplication which lead to a loss
 of accuracy -

 (L#188-#190 of account_position.rs):
 let compounded_balance = collat_coeff

 . mul_int (who_collat)

 . ok_or (Error :: CalcAccountDataMathError) ? ;

 (L#94-#96 of deposit.rs):
 let amount_to_mint = collat_coeff

 . recip_mul_int (amount)

 . ok_or (Error :: MathOverflowError) ? ;

 (L#137-#139 of liquidate.rs):
 let liq_lp_amount = FixedI128 :: from_inner (collat . coeff . unwrap ())

 . recip_mul_int (liq_comp_amount)

 . ok_or (Error :: LiquidateMathError) ? ;

 (L#54-#56 of withdraw.rs):
 let underlying_balance = collat_coeff

 . mul_int (collat_balance)

 . ok_or (Error :: MathOverflowError) ? ;

 25

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/account_position.rs#L188-L190
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/deposit.rs#L94-L96
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/liquidate.rs#L137-L139
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/withdraw.rs#L54-L56
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/types/price_provider.rs#L56-L60
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/account_position.rs#L188-L190
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/deposit.rs#L94-L96
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/liquidate.rs#L137-L139
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/withdraw.rs#L54-L56

 (L#61-#63 of withdraw.rs):
 let s_token_to_burn = collat_coeff

 . recip_mul_int (amount)

 . ok_or (Error :: MathOverflowError) ? ;

 (L#41-#45 of price_provider.rs):
 median_twap_price

 . mul_int (amount)

 . and_then (| a | FixedI128 :: from_rational (a ,

 10i128 . pow (config . asset_decimals)))

 . and_then (| a | a . to_precision (self . base_asset . decimals))

 . ok_or (Error :: InvalidAssetPrice)

 (L#56-#60 of price_provider.rs):
 median_twap_price

 . recip_mul_int (amount)

 . and_then (| a | FixedI128 :: from_rational (a ,

 10i128 . pow (self . base_asset . decimals)))

 . and_then (| a | a . to_precision (config . asset_decimals))

 . ok_or (Error :: InvalidAssetPrice)

 Recommendation

 Add arithmetic functions to ensure that division occurs after multiplication in this computation.
 For example we could replace L#188-#190 of account_position.rs with a function
 /// Returns amount * collateral coefficient without losing precision

 pub fn get_compounded_balance (

 env : & Env ,

 reserve : & ReserveData ,

 s_token_supply : i128 ,

 s_token_underlying_balance : i128 ,

 debt_token_supply : i128 ,

 amoun t: i128 ,

) -> Result < FixedI128 , Error >

 Which computes the compounded balance as (while being mindful of the potential for overflow
 of course!):
 [(s_token_underlying_balance + lender_ar * debt_token_supply)*amount]/s_token_supply

 26

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/withdraw.rs#L61-L63
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/types/price_provider.rs#L41-L45
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/types/price_provider.rs#L56-L60
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/account_position.rs#L188-L190

 Similarly for the other computations.

 Customer Response

 Acknowledged and will fix.

 Fix Review

 The issue is resolved in the recent commit 993fea5 . As recommended, the computations
 appearing above have been relocated to auxiliary methods
 (get_compounded_balance , get_lp_amount ,...) which perform them correctly without
 causing unnecessary precision loss.

 27

https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

 M-3 Precision loss issues: double decimal conversion

 Severity: Medium Impact: Medium Likelihood: Medium

 Category: Arithmetic Files:
 price_provider.rs

 Description

 The double conversion in L#41-#45 and L#56-#60 of price_provider.rs passes via FixedI128
 type (with fixed denominator 1e9) loses precision when the base asset decimals are >9:

 median_twap_price

 . mul_int (amount)

 . and_then (| a | FixedI128 :: from_rational (a ,

 10i128 . pow (config . asset_decimals)))

 . and_then (| a | a . to_precision (self . base_asset . decimals))

 . ok_or (Error :: InvalidAssetPrice)

 median_twap_price

 . recip_mul_int (amount)

 . and_then (| a | FixedI128 :: from_rational (a ,

 10i128 . pow (self . base_asset . decimals)))

 . and_then (| a | a . to_precision (config . asset_decimals))

 . ok_or (Error :: InvalidAssetPrice)

 Recommendation

 Convert the median_twap_price directly to the required precision.

 Customer Response

 Acknowledged and will fix.

 Fix Review

 The issue is resolved in commit 993fea5 .

 28

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/types/price_provider.rs#L56-L60
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/types/price_provider.rs#L56-L60
https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

 M-4 Centralization Risk

 Severity: Medium Impact: Medium Likelihood: Medium

 Category: Governance, Web2 security Files:

 Description

 There is currently a single admin rule in the entire protocol which is allowed to do everything (e.g.,
 upgrading the entire contract logic) but also required for fairly standard maintenance tasks (e.g.,
 adjusting config parameters).

 This is a dangerous situation from the point of view of web2 security which does not conform
 with standard security and risk management principles like separation of duties and least
 privilege access.

 Recommendation
 We recommend adding several less-privileged operational rules who will handle daily tasks like
 updating config parameters etc and reserving the admin rule to contract upgrades. We further
 suggest that all privileged rules would require multiple signatures.

 Customer response
 After adding RBAC to the protocol the compiled Wasm exceeded ~84KB (~74KB after Wasm
 optimization) which is beyond the current Soroban threshold of the "Ledger entry size (including
 Wasm entries) per Tx" (64 KB). So we had to revert it. We are planning to add RBAC after Soroban
 increases its limits. But as of now, we will either use the existing Multisig solution for admin or
 upgrade it in the future.

 29

 M-5 There is no backup price feed

 Severity: Medium Impact: Medium Likelihood: Medium

 Category: SEP-40 Oracle, Logic Files:

 Description

 Like many other DeFi protocols, Slender requires precise off-chain price data for many of its
 critical functions (e.g., lending/borrowing, liquidations etc) which is accessed via an SEP-40
 compatible oracle interface. However, it is by no means guaranteed that a given oracle feed
 would remain functional and correct forever. Unfortunately, while still a rare event, oracle failures
 are not unheard of. At best, unhandled oracle reverts can lead to a potential DoS. At worst, a
 malfunctioning oracle which reports a bad price could spell a disaster for the protocol. Thus, it is
 highly recommended for Slender to avoid putting all of its eggs in one basket by depending upon
 the correctness of a single external entity for its function.

 Recommendation

 We suggest including a fallback oracle in the protocol.

 Customer response

 Acknowledged and will fix.

 Fix Review

 Resolved in commit 993fea5 .

 30

https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

 M-6 There is no stale price check

 Severity: Medium Impact: Medium Likelihood: Medium

 Category: SEP-40 Oracle, Logic Files:

 Description

 Slender does not check whether or not the information obtained via the SEP-40 oracle interface
 is stale (i.e., it does not check if the timestamp field of the PriceData struct is sufficiently recent).

 Exploit Scenario

 There are numerous possible situations in which this mistake leads to unwanted behavior which
 is bad for the protocol. For example, an attacker sets an automated script waiting for the
 moment when Slender’s chosen SEP-40 oracle price update lags behind (e.g., due to outage).
 When such an event occurs, the attacker exploits this by taking an under collateralized loan at an
 incorrect price level, creating bad debt to the protocol.

 Recommendation

 Add a staleness parameter to the price feed config and logic to handle stale prices (when the
 price returned by the primary oracle is stale, use the backup oracle).

 Customer response

 Acknowledged and will fix.

 Fix Review

 The commit 993fea5 resolves the problem by adding a configuration parameter
 min_timestamp_delta and a test for staleness:

 if timestamp_delta > config . min_timestamp_delta {

 return Err (Error :: NoPriceForAsset);

 }

 31

https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

 Remark - note that if the timestamp is stale the chosen solution is to return an error, so the
 protocol would be unusable during such a time.

 32

 M-7 The protocol lacks circuit breakers (such as min/max prices)

 Severity: Medium Impact: Medium Likelihood: Medium

 Category: SEP-40 Oracle, Logic Files: price_provider.rs

 Description

 Many off-chain oracles (e.g., Chainlink) have internally configured min/max prices to prevent
 spurious reading. This however can be problematic in rare extreme events (e.g., flash crash,
 bridge compromise, or a stable coin depegging event). It is important for any lending/borrowing
 protocol to be able to recognize such outliers and install “circuit breaker” logic which checks if
 minAnswer <= reportedPrice <= maxAnswer.

 Recommendation

 Compute “sanity prices” off-chain and stop protocol action in cases of extreme price events.

 Customer response

 Acknowledged. Will fix

 Fix Review
 The issue is resolved in commit 993fea5 by adding min/max prices computed off-chain:

 let is_sanity_price = twap_price >=

 config . min_sanity_price_in_base

 && twap_price <= config . max_sanity_price_in_base ;

 33

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/types/price_provider.rs
https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

 L-1 Some configuration parameters lack input validation

 Severity: Low Impact: Medium Likelihood: Low

 Category: Logic Files:

 Description

 The function set_ir_params is a setter for the struct
 pub struct IRParams {

 pub alpha : u32 ,

 pub initial_rate : u32 ,

 pub max_rate : u32 ,

 pub scaling_coeff : u32 ,

 }

 The following checks are performed by require_valid_ir_params -
 1. initial_rate<= PERCENTAGE_FACTOR
 2. max_rate > PERCENTAGE_FACTOR
 3. scaling_coeff < PERCENTAGE_FACTOR

 where PERCENTAGE_FACTOR = 10_000 (represents 100%). However, the following further checks
 should be performed:

 4. initial_rate <= max_rate
 5. scaling_coeff > 0

 The function set_initial_health is a setter for the initial_health parameter which is treated as a
 percentage in the code. However, there are no sanity checks to verify it is indeed between zero
 and PERCENTAGE_FACTOR.

 The function set_flash_loan_fee is a setter for the flash_loan_fee parameter which is treated as
 a percentage in the code. However, there are no sanity checks to verify it is indeed between zero
 and PERCENTAGE_FACTOR.

 34

 In addition, all these checks need to be performed in initialize (which is called upon pool
 deployment).

 The function set_price_feeds gets as input the struct
 pub struct PriceFeedConfigInput {

 pub asset : Address ,

 pub asset_decimals : u32 ,

 pub feeds : Vec < PriceFeed >,

 }

 Where the elements of the feeds vector are
 pub struct PriceFeed {

 pub feed : Address ,

 pub feed_asset : OracleAsset ,

 pub feed_decimals : u32 ,

 pub twap_records : u32 ,

 pub timestamp_precision : TimestampPrecision ,

 }

 and
 pub enum OracleAsset {

 Stellar (Address),

 Other (Symbol),

 }

 impl From < OracleAsset > for Asset {

 fn from (asset : OracleAsset) -> Self {

 match asset {

 OracleAsset :: Stellar (address) => Asset :: Stellar (address),

 OracleAsset :: Other (symbol) => Asset :: Other (symbol),

 }

 }

 }

 There are many obvious sanity tests that can be added here (e.g., between feed_asset and asset
 etc).

 35

 Recommendation
 Add the extra sanity checks to validate the input of the setter functions and the initialize
 function called at deployment. In addition, it might seem reasonable to have some safety (as
 opposed to just sanity) boundaries in order to prevent some kind of a “fat finger error”.
 The same is true for configure_as_collateral which does perform sanity checks but could
 potentially benefit from some safety checks.

 Customer Response
 Acknowledged. Will fix.

 Fix Review
 commit 993fea5 adds the necessary checks.

 36

https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

 I-1 Some of the names for the variables are misleading

 Severity: Informational Impact: Likelihood:

 Category: Best Practice Files:
 account_positions.rs

 Description

 In L# 223-227 of account_positions.rs the computation of compound_debt is reusing the name
 compound_balance:

 let compounded_balance = debt_coeff

 . mul_int (who_debt)

 . ok_or (Error :: CalcAccountDataMathError) ? ;

 let debt_balance_in_base = price_provider . convert_to_base (& asset ,

 compounded_balance) ? ;

 Recommendation

 We suggest fixing it to improve the readability of the code.

 Customer Response

 Acknowledged and fixed.

 37

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/account_position.rs
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/account_position.rs#L223-L227

 I-2 Replace 10i128.pow with 10i128.checked_pow

 Severity: Informational Impact: Likelihood:

 Category: Best Practice Files:

 Description

 The power operation used in the code is not protected against overflow.

 Recommendation

 We suggest replacing it with its checked variant.

 Customer Response

 Acknowledged and fixed.

 38

 I-3 Some inline comments are inaccurate/outdated

 Severity: Informational Impact: Likelihood:

 Category: Best Practice Files: rate.rs

 Description

 The inline comments for the function calc_interest_rate state:
 /// Calculate interest rate IR = MIN [max_rate, base_rate / (1 - U)^alpha]

 /// where

 /// U - utilization, U = total_debt / total_collateral

 /// ir_params.alpha - parameter, by default 1.43 expressed as 143 with denominator

 100

 /// ir_params.max_rate - maximal value of interest rate, by default 500% expressed as

 50000 with denominator 10000

 /// ir_params.initial_rate - base interest rate, by default 2%, expressed as 200 with

 denominator 10000

 ///

 /// For (1-U)^alpha calculation use binomial approximation with four terms

 /// (1-U)^a = 1 - alpha * U + alpha/2 * (alpha - 1) * U^2 - alpha/6 * (alpha-1) *

 (alpha-2) * U^3 + alpha/24 * (alpha-1) *(alpha-2) * (alpha-3) * U^4

 However this is not correct, as we an see from the code
 let num_of_iterations = if u > FixedI128 :: from_rational (1 , 2) ? {

 19

 } else {

 3

 };

 We either use a binomial approximation with five terms (when alpha<=1/2) or twenty-one (when
 alpha>1/2).

 39

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/utils/rate.rs

 Customer Response

 Partially acknowledged - note that in the case where alpha<=1/2 , we actually do use four terms
 because we start from two in the cycle below. This was done for convenient tracking of terms.
 The problem is more the naming convention since num_of_iterations is actually not the real
 number of iterations… will fix.

 40

 I-4 Flash loan event sometimes include irrelevant info

 Severity: Informational Impact: Likelihood:

 Category: Best Practice Files: flash_loan.rs

 Description

 The event omitted in L# 116 of flash_loan.rs
 event :: flash_loan (

 env ,

 who ,

 receiver ,

 & received_asset . asset ,

 received_asset . amount ,

 received_asset . premium ,

);

 Includes the received_asset . premium which is not charged in case the user choose to borrow
 the assets following the flash loan (i.e., in this case the boolean invocation parameter borrow was
 set to true) which is misleading.

 Recommendation

 Add the value of the borrow parameter to the emitted event. In case borrow = true , set
 received_asset . premium = 0 .

 Customer Response

 Acknowledged and fixed.

 41

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/flash_loan.rs
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/flash_loan.rs#L116-L123

 About Certora
 Certora is a Web3 security company that provides industry-leading formal verification tools and
 smart contract audits. Certora’s flagship security product, Certora Prover, is a unique SaaS
 product that automatically locates even the most rare & hard-to-find bugs on your smart
 contracts or mathematically proves their absence. The Certora Prover plugs into your standard
 deployment pipeline. It is helpful for smart contract developers and security researchers during
 auditing and bug bounties.

 Certora also provides services such as auditing, formal verification projects,
 and incident response.

 42

