% certora

Slender Security Assessment
Report

July 2024

Prepared for Slender

Z“; certora

Table of content

(o L= To1 S0 0 4 T= 1 Y2 4
FINAINGS SUMIMAIY ..ottt e e oo et e e e e e e et e e e e e e e e e be e et e e e e e e e nnnnnneeeeas 6
C-1 Users can combine borrow + withdraw to open positions with arbitrary (positive) NPV.................c....... 7
C-2 Transfer- and Burn-on-zero can cause liquidation t0 revert............ccccoooiiiiiii e 9
C-3 Stellar’s resource limit can block lIQUIdAtIONS.............euuiiiiiiiiiiiiiiiiieiieeeeeeeeeee e e 12
C-4 Liquidating small positions is NOt INCENTIVIZE.oooooiiiiii 14
C-5 Incorrect rounding enables an attacker to drain funds from the protocol.............ccccuiiiiiiiiiiiiiiiiiiiieee 16
H-1 Liquidator can seize a bad position’s collateral without repaying any of its debt.................cccccis 18
H-2 Lenders can be immediately liquidated once the protocol is unpaused..........ccccccooviiiiiiiiiiiiiiiiiiieeenn. 20
H-3 TWAP price calculation €an be INCOMECT............uiiii e e e 21
M-1 The formula for NPV in the technical specification is unclear.................coooiiiiiiiiiiiiiiiciiccs 23
M-2 Precision loss issues: division-before-multiplication............cccccoo 25
M-3 Precision loss issues: double decimal CONVEISION...........c.oooi oot 28
M-4 Centralization RiSK..........oooi oo 29
M-5 There is N0 backup PriCe fEEA.......uuiiiiieieeeeeeeeeeee e, 30
M-6 There is N0 Stale PriCE CRECK.........ooiiiiici i e e e e e e et e e e e e e e e e e aeraaas 31
M-7 The protocol lacks circuit breakers (such as min/max PriCeS).........couuuuummrieiieiiiiiee e 33
L-1 Some configuration parameters lack input validation...............ccooiiiiiiiiiiii s 34
I-1 Some of the names for the variables are misleading.............uveiiiiiiiiiii e 37
I-2 Replace 10i128.pow with 10i128.CheCKed _POW..........uuiiiiiiiiiee e e e eeaneas 38
[-3 Some inline comments are inaccurate/outdated...............ccuiiiiiiii i 39
I-4 Flash loan event sometimes include irrelevant info............oooooi 41

certora

TAVAY
A/

Z“; certora

Project Summary

Project Scope

The original project files are:

Repository Files Commits Compiler Platform

eg-lab/slender/ All files in the repo (original) 93d1648 Stellar

(audit-fixes)
eg-lab/slender/ All files in the repo 993fea5 Stellar

Protocol Overview

Slender is the first non-custodial lending/borrowing DeFi protocol on Stellar's Soroban
network. It uses a pool-based strategy that aggregates each user's supplied assets.
Currently, the protocol supports only three markets (XRP, XLM, and USDC) but ultimately
plans to expand in order to allow users to lend and borrow any asset that is supported on
Soroban (including real-world assets).

Lenders provide liquidity to a market in exchange for an s-token (i.e., essentially Slender’s
LP-Token). These tokens accrue interest and reflect this accrual in their “price”. Users are
able to borrow assets from the protocol via an over-collateralized loan which issues them
a dToken (debt token). Each borrowing market has a floating interest rate, determined by
the utilization of that market's assets. Utilization is capped (default value is 90% cap) to
always keep a reserve for user withdrawals. Users cannot be both lenders and borrowers
of the same asset.

In addition, users can take flash loans from a market. When a flash loan is concluded, the

4

https://github.com/eq-lab/slender/tree/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085
https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

Z“; certora

users have a choice between paying back the loan + fee or borrowing the funds in which
case no fee is charged.

For price information Slender’s plans to use SEP-40 compatible third-party oracles (e.g,,
reflector) and apply TWAP to the price data points in order to mitigate operator error,
market volatility, and manipulation risks.

Project Goals

Assess the security of the protocol via manual audit.

7|

'rZ‘g certora

Findings Summary

The table below summarizes the findings of the review, including type and severity details.

Severity Discovered Acknowledged Code Fixed
High 3 3 3
Medium 7 7 6

| Low 1 1 1

‘ Informational 4 3 3

Total 20 19 18

certora

AV
\WAY

Detailed Findings

C-1Users can combine borrow + withdraw to open positions with arbitrary
(positive) NPV

Category: Logic, Economics Files: borrow.rs

withdraw.rs
finalize _transfer.rs

Description

In order to ensure the solvency of an over-collateralized borrowing & lending protocol, there is
usually a minimal loan-to-value ratio that is required in order to open a position. In Slender’s case
this is expressed via the initial_health configuration parameter which is checked in line #105 of
the SlistskEaely function:

require gte initial health(env, &account data, amount in base)?;

However, we note that the withdraw function only checks that users have positive NPV (line #114
for fungible assets and #164 for real-world assets) but does not check that the NPV is greater or
equal to initial health:

require good position(env, &account data);

Similarly, the only check on users performing a transfer of s-tokens (in L#72 of

finalize_transfer.rs) is:

require good position(env, &from account data);

That is not a priori unreasonable, but effectively makes it possible to bypass said restriction
which is imposed in the case of borrowing.

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/borrow.rs
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/withdraw.rs
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/finalize_transfer.rs
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/borrow.rs#L105
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/withdraw.rs#L114
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/withdraw.rs#L164
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/finalize_transfer.rs#L72

Z“; certora

Exploit

There are (at least) two possible attack vectors:
1. An attacker can borrow and then withdraw in order to open “bad positions” (i.e., positions
with less than the required initial health), causing the protocol to accumulate bad debt.
2. An attacker can open a position with precisely the minimal required initial health and then
withdraw and self-liquidate to extract money from the protocol.

Recommendation

Either have an intermediate “under-water” stage between healthy position and liquidation (i.e.,
when O = liquidation_threshold < position_health < initial_health) where users are only allowed
to deposit and repay but withdraw is disabled or require the user to cover a proportional part of
their total debt when withdrawing their collateral.

Customer Response

Acknowledged and will fix.

Fix Review

The issue is successfully resolved in the commit 993fea5 by adding the missing check (i.e., see
PR #128).

https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd
https://github.com/eq-lab/slender/commit/560a9cde8b47a013d9607b710a5a64b96f026ed0

Z“; certora

C-2 Transfer- and Burn-on-zero can cause liquidation to revert

Category: Logic, Economics Files: liquidate.rs

Description

The functions
transfer on liquidation(e: Env, from:
verify caller is pool (&e);

require positive amount (amount) ;

do transfer (&e, from, to, amount,

And the functions (called in SIHREEIEEs):
receive balance(e: &Env, addr amount: 112

)

spend balance (e: &Env, addr c 1128

all panic if the amount parameter is non-positive. Thus, because of the line
s_token.transfer on liquidation(who, liquidator, &lig lp amount);

Liquidation would revert if ERegReRE IR turns out to be non-positive. The latter is computed

lig 1p amount = FixedIl: :from inner (collat.coeff.unwrap())
.recip mul int (lig comp amount)

.0k or(Error::LiquidateMathError) ?;

and

lig comp amount = calc lig amount (
price provider,

&collat,

hundred percent,

discount percent,

lig bonus percent,

safe collat percent,

initial health percent,

total collat disc after in base,

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/liquidate.rs

Z“; certora

total debt after in base,

However, examining the code it is not hard to see that can be zero:

lig comp amount price provider.convert from base (&collat.asset,

safe collat in base) ?;

lig comp amount = safe discount percent
.recip mul int (lig comp amount)

.0k or(Error::LiquidateMathError) ?;

Ok (if 1lig comp amount.is negative () {

collat.comp balance

A similar issue occurs for burn as well in L#176:

s_token.burn(who, &lig 1lp amount, &lig comp amount, liquidator);

add stoken underlying balance (env, &s token.address, amount to sub)?;

Recommendation

In liquidations, allow transfer and burn of zero value to prevent reverts.

Customer Response

Acknowledged and will fix.

Fix Review

Fixed in commit 993feab by adding checks before transferring the underlying asset from the

liguidator to the s-token contract address (L#295-297):
if debt comp to transfer > 0 {

underlying asset.transfer (liquidator, s token address,

&debt comp to transfer);

}

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/liquidate.rs#L176
https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

Z“; certora

and before burning the debt token (L#299-301)
if debt 1lp to burn > 0 {
debt token.burn (who, &debt 1lp to burn);

And the s-token (L#195-197):
if 1lig lp amount > 0 && liquidator part underlying > 0 {

s_token.burn(who, &lig lp amount, &liquidator part underlying,

liguidator) ;
}

il

certora

AV
\WAY

C-3 Stellar's resource limit can block liquidations

Category: Blockchain Files: liquidate.rs

Description

Due to Stellar’s limit on I/O operations the liquidation function will revert as soon as the number
of reserves the user is using as collateral or borrowing is sufficiently large (e.g., more than ~5) or
even with 3 assets if the cost of oracle prices query (which can be proportional to the amount of
TWAP records requested) is sufficiently large.

Impact
In such cases, users might be able to borrow assets from the protocol while being immune to
liquidations, effectively creating bad debt and threatening the economic stability of the protocol.

Recommendation

Carefully check the cost of external calls like prices or underlying_asset.transfer in terms of 1/O
operations and adjust parameters accordingly. Implement logic that prevents a user from
depositing or borrowing from too many different reserves.

Customer Response

Acknowledged and fixed. We added settings to limit the number of active reserves (see L#12 of
pool_config.rs) per user. Currently, it is set to 3, but when the Stellar blockchain increases their I/O
limits, it will be reconsidered. Furthermore, we have updated the Oracle mock contract and
reproduced the approach reflector’s price oracle (the oracle used for launch) implements when
returning prices. After testing the most CPU/Memory intensive operations (liquidation with 3
assets: 2 deposits + 1debt, 1 deposit + 2 debts) we are going to reduce the number of latest
price values for each asset to 3 for now (see L#12 of price_feed.rs).

12

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/liquidate.rs
https://github.com/eq-lab/slender/blob/993fea5cec171e6f9cb493be1fd2d0166c49e2bd/interfaces/pool-interface/src/types/pool_config.rs#L12
https://github.com/eq-lab/slender/blob/993fea5cec171e6f9cb493be1fd2d0166c49e2bd/interfaces/pool-interface/src/types/price_feed.rs#L12

Z“; certora

Fix Review
The problem is resolved in commit 993fea5 via the changes outlined above.

13

https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

certora

AV
\WAY

C-4 Liquidating small positions is not incentivized

Category: Logic Files: liquidate.rs

Description

If a user's borrowing balance exceeds their total collateral value (borrowing capacity) due to the
value of collateral falling, or borrowed assets increasing in value, the liquidation mechanism
implemented in Slender allows the liquidator to buy the borrower’s collateral (at a slightly better
than market price). Hence, the liquidation bonus is essentially implemented here as a percentage
of a bad position's total collateral. However, we note that there is no restriction on opening
positions with small values of collateral/debt as long as the user’s NPV is positive, so a bad actor
can initiate a sybil attack on the protocol, accruing bad debt that can lead to protocol insolvency.

Exploit

An attacker opens multiple positions (via a sybil attack) with small collateral and debt values and
each with a small total NPV and waits for them to deep into negative NPV on purpose. No
liquidator actually has the incentive to liquidate each of the individual positions because the
cost of submitting a liquidating transaction is greater than the potential gain. Thus the attacker
manages to deliberately create bad debt for the protocol.

Recommendation

Disallow repayments/withdrawals which leave only a small debt/collateral (the precise definition
of “small” here should probably be a configuration parameter determined via off-chain
simulation).

Customer response

Acknowledged and will fix.

14

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/liquidate.rs

Z“; certora

Fix Review
The issue is resolved in the latest commit by adding the sielHlESIelE ks B8 ERcIo RN =R telbleld o Cl

pool config.min debt amount|eElEIagleiicIgRTolo Rigl-Neolgl-Tel 4

require min position amounts (env, &account data, &pool config) ?;

in line #158 of repay.rs, line #150 of borrow.rs, line #84 of finalize _transfer.rs, line #50 of

set_as_collateral.rs, and line #187 of withdraw.rs.

15

https://github.com/eq-lab/slender/blob/audit-fixes/contracts/pool/src/methods/repay.rs#L158
https://github.com/eq-lab/slender/blob/audit-fixes/contracts/pool/src/methods/borrow.rs#L150
https://github.com/eq-lab/slender/blob/audit-fixes/contracts/pool/src/methods/finalize_transfer.rs#L84
https://github.com/eq-lab/slender/blob/audit-fixes/contracts/pool/src/methods/set_as_collateral.rs#L50
https://github.com/eq-lab/slender/blob/audit-fixes/contracts/pool/src/methods/withdraw.rs#L187

Z“; certora

C-5Incorrect rounding enables an attacker to drain funds from the protocol

Category: Arithmetic Files: withdraw.rs

Description

It is essential that rounding in DeFi would always favor the protocol. However, examining the code
of withdraw.rs which handles the amount of underlying asset token to supply to the user and the
corresponding amount of s-tokens to burn for fungible reserve types, we note that the key

quantity is rounded down instead of up.

(underlying to withdraw, s token to burn) =
if amount >= underlying balance {
(underlying balance, collat balance)
else {

s _token to burn = collat coeff

.recip mul int (amount)

.ok or(Error::MathOverflowError) ?;

(amount, s token to burn)

Exploit
In our case, the core idea behind the attack is elementary:

assume thatjRSARETSRIEEES say for instancelN RTINS, Alice (the attacker) deposits
A-tokens, and receives s-tokens in return. Alice then proceeds to
request to withdraw 3 A-tokens from the reserve. Since SIREI TN IttaNEcYZEENN it can do it

again, receiving a total of | IRIEIREE A-tokens in the expanse of the protocol and other users.

16

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/withdraw.rs#L61-L63
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/withdraw.rs#L61-L63

Z“; certora

Recommendation
e Fix the rounding error (i.e. in line #62 of withdraw.rs - replace with

.recip mul int ceil)ss

Customer response

Acknowledged and will fix.

Fix review

Resolved in the latest commit. The entire computation above has now been refactored into the
function
pub fn get lp amount (

env: &kEnv,

reserve: &Reser

pool config: &Poo

s_token supply: 112€

s _token underlying balance: il
debt token supply: 1128,
amount:

round ceil: 1,

) —> Result<il28, Error>

which is called in withdraw.rs with the I boolean flag set to true:
} else {
let s token to burn = get 1lp amount (
env,
&reserve,
&pool config,
s_token supply,
stoken underlying balance,
debt token supply,
amount,
true,

)2

-7

(amount, s token to burn)

17

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/withdraw.rs#L62

Z“; certora

H-1Liquidator can seize a bad position’s collateral without repaying any of
its debt

Severity: High | Impact: High | Likelihood: Medium
Category: Logic, Economics Files: liquidate.rs
Description

If a user’'s NPV is sufficiently negative, it is possible for the liquidation bonus to reach 100%:

zero percent = FixedIl28::from inner (0);

let initial health percent =
FixedIl28::from percentage (read initial health(env) ?) .unwrap () ;
let hundred percent = FixedIl28::from percentage (PERCENTAGE FACTOR) .unwrap () ;
let npv percent = FixedIl28::from rational (account data.npv,
total collat disc after in base
.0k or(Error::LiquidateMathError) ?;

let lig bonus percent = npv percent.min(zero percent) .abs () .min (hundred percent) ;

Which would cause SEISSIERIRERIS (and thereforejReiacHeIN ol Holifelel /SRR RIEELS) tO be

Zero:

let total debt 1lig bonus percent = hundred percent
.checked sub (lig bonus percent)

.0k or(Error::LiquidateMathError) ?;

et debt comp amount = total debt 1ig bonus percent
.mul int (lig comp amount)

.0k or(Error::LiquidateMathError) ?;

let debt in base = price provider.convert to base(&collat.asset,

debt comp amount) ?;

18

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/liquidate.rs

Z“; certora

Recommendation

We suggest fixing the mathematical/economical logic and the formula to account for this
scenario.

Customer response

Acknowledged and will fix.

Fix Review

The latest commit 993feab fixes the issue.

19

https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

Z“; certora

H-2 Lenders can be immediately liquidated once the protocol is unpaused

| Severity: High Impact: High Likelihood: Medium
Category: Logic Files: liquidate.rs
Description

Slender contains the option to pause the protocol (by a privileged user rule) which correctly
stops all protocol functions such as borrowing, depositing, liquidations, etc. However, once the
protocol has been unpaused there is no “grace period” granted to lenders - if external price
fluctuations have caused their position to fall under water they can be liquidated immediately
without being given any chance to save their positions, which is unfair towards the users of the
protocol.

Recommendation

Allow for AAVE-style “grace period"” when returning from a pause state to normal operation (see
e.g. PriceOracleSentinel for a reference implementation of this idea).

Customer response
Acknowledged. Will Fix.

Fix Review
Fixed in the latest commit 993feab.

"Note: during such “grace period” user operations such as deposits + repayments + flash loans
should be allowed, but not withdrawals or token transfers.
20

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/liquidate.rs
https://docs.aave.com/developers/core-contracts/priceoraclesentinel
https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

Z“; certora

H-3 TWAP price calculation can be incorrect

Severity: High Impact: Medium | Likelihood: High
Category: Arithmetic Error, SEP-40 Oracle, Logic Files: price_provider.rs
Description

As often recommended, Slender prices assets using the time-weighted average price (TWAP) of
multiple oracle price data points in order to reduce the risk of high asset volatility or malicious
price spoofing. However, the function twap which implements the computation incorrectly
assumes that the PriceData vector

/// Price data for an asset at a specific timestamp
#[contracttype]
pub struct PriceData {

price: 1128,

timestamp: u64

reported by the SEP-40 function prices

/// Get last N price records
fn prices(
env: soroban_sdk: :Env,
asset: Asset,
records: u32
) -> Option<Vec<PriceData>>;

is always sorted in descending order with respect to the timestamp:

price curr = prices.get unchecked(0); @audit

21

http://price_provider.rs/
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/types/price_provider.rs#L103-L167
https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0040.md

Z“; certora

price prev = prices.get unchecked(i - 1);

price curr = prices.get unchecked(i); @audit

However, while this may be true for Reflector, it is not currently part of the trait defined by the
SEP and would lead to an arithmetic error in general.

Exploit Scenario
Incorrect TWAP computations leads to systematically incorrect pricing of collateral and debt

which would allow savvy arbitrage traders to drain the protocol.

Recommendation

Check to ensure that the prices received from the oracle are indeed sorted according to their
timestamp in descending order.

CusUNnerresponse
Acknowledged. Will fix.

Fix Review

This issue is resolved in commit 993feab.

22

https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

Z“; certora

M-1The formula for NPV in the technical specification is unclear

Severity: Medium Impact: Low Likelihood: High
Category: Documentation Files:
Description

In Slender’s technical specification document, the formula for computing the net position value
(NPV) is stated” as:

N PVpecitication = Z Collateral; - Discount; - Price; — Z Debt; - Price;

J
However, examining the code in account_positions.rs, we see that NPV is actually computed as:
NPV p4e = Z CCollateral; - Discount; - Price; — Z CDebt;; - Price;
i J

Where the compound balance and debt are the product of the collateral (respectively, debt)
coefficient with the balance (resp. debt):

CCollateral;; = C’CZ - Collateral;
CDebt;; = DC} - Debt;

where collateral coefficient is computed via the formula

total_debt; - LAR! + Balance;

CCl =
t sToken; supply

and the debt coefficient is another name for the borrower’s accrued rate

DCY = BAR!

Impact

2 Note: it is mentioned in the document that “NPV is also reduced when the interest rate is accrued: the debt term
under the second sum is the real debt, just like the collateral term under the first sum term.”, however the meaning
of “real” in this context is not made clear.

23

https://www.notion.so/eq-lab/Slender-technical-specification-ac9644adb9284a8f88cfc0146990b119
https://www.codecogs.com/eqnedit.php?latex=NPV_%7Bspecification%7D%20%3D%20%5Csum_%7Bi%7D%20Collateral_%7Bi%7D%20%5Ccdot%20Discount_%7Bi%7D%20%5Ccdot%20Price_%7Bi%7D%20-%20%5Csum_%7Bj%7D%20Debt_%7Bj%7D%20%5Ccdot%20Price_%7Bj%7D#0
https://www.codecogs.com/eqnedit.php?latex=NPV_%7Bcode%7D%20%3D%20%5Csum_%7Bi%7D%20CCollateral_%7Bi%2Ct%7D%20%5Ccdot%20Discount_%7Bi%7D%20%5Ccdot%20Price_%7Bi%7D%20-%20%5Csum_%7Bj%7D%20CDebt_%7Bj%2Ct%7D%20%5Ccdot%20Price_%7Bj%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20CCollateral_%7Bi%2Ct%7D%20%3D%20CC%5E%7Bi%7D_t%20%5Ccdot%20Collateral_%7Bi%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20CDebt_%7Bj%2Ct%7D%20%3D%20DC%5E%7Bj%7D_t%20%5Ccdot%20Debt_%7Bi%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20CC%5Ei_%7Bt%7D%20%3D%20%5Cfrac%7Btotal%5C_debt_i%20%5Ccdot%20LAR%5Ei_%7Bt%7D%20%2B%20Balance_i%7D%7BsToken_i%20%5C%20supply%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=DC_t%5E%7Bj%7D%20%3D%20%20BAR_t%5Ej#0

Z“; certora

Traders relying on the formula published by Slender could be liquidated despite the fact that by
the stated formula their positions are supposed to be healthy.
Recommendation

Correct the discrepancy between the code and the published documentation by changing the
notation to explicitly include the collateral/debt coefficients, expanding the subsequent
explanatory paragraph, and perhaps including some numerical examples to illustrate the
computation.

Customer response

Acknowledged, will change the documentation to reflect this.

Fix Review
Fixed in the latest version of the technical specification.

24

Z“; certora

M-2 Precision loss issues: division-before-multiplication

Severity: Medium Impact: Medium | Likelihood: Medium

Category: Arithmetic Files:
account_position.rs
deposit.rs

liquidate.rs
withdraw.rs

price provider.rs

Description

The following computations are instances of division-before-multiplication which lead to a loss

of accuracy -

(L#188-#190 of account_position.rs):

compounded balance = collat coeff

.mul_ int (who collat)

.0k or (Error::CalcAccountDataMathError) ?;

(L#94-#96 of deposit.rs):

amount to mint = collat coeff
.recip mul int (amount)

.ok or(Error::MathOverflowError) ?;

(L#137-#139 of liquidate.rs):

lig 1p amount = FixedIl28::from inner (collat.coeff.unwrap())

.recip mul int(lig comp amount)

.0k or(Error::LiquidateMathError) ?;

(L#54-#56 of withdraw.rs):

underlying balance = collat coeff

.mul int (collat balance)

.0k or(Error::MathOverflowError) ?;

25

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/account_position.rs#L188-L190
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/deposit.rs#L94-L96
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/liquidate.rs#L137-L139
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/withdraw.rs#L54-L56
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/types/price_provider.rs#L56-L60
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/account_position.rs#L188-L190
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/deposit.rs#L94-L96
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/liquidate.rs#L137-L139
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/withdraw.rs#L54-L56

Z“; certora

(L#61-#63 of withdraw.rs):

s _token to burn = collat coeff

.recip mul int (amount)

.ok_or(Errer::Math@verflowError)?;

(L#41-#45 of price_provider.rs):

median twap price

.mul_ int (amount)
.and then(|a| FixedIl28::from rational (a,
10i128.pow (config.asset decimals)))

.and then(|a| a.to precision (.base asset.decimals))

.0k or(Error::InvalidAssetPrice)

(L#56-#60 of price_provider.rs):

median twap price

.recip mul int (amount)
.and then(|a| FixedIl28::from rational (a,
101128 .pow (.base asset.decimals)))
.and then(|a| a.to precision(config.asset decimals))

.ok or(Error::InvalidA >tPrice)

Recommendation

Add arithmetic functions to ensure that division occurs after multiplication in this computation.
For example we could replace L#188-#190 of account_position.rs with a function

get compounded balance (
env: &Env,
reserve: &R

s _token supply:

s _token underlying balance: 1128,

debt token supply:
amount: 1128,

) —> Result<FixedIl28, Error>

Which computes the compounded balance as (while being mindful of the potential for overflow
of course!):

26

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/withdraw.rs#L61-L63
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/types/price_provider.rs#L41-L45
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/types/price_provider.rs#L56-L60
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/account_position.rs#L188-L190

Z“; certora

Similarly for the other computations.

Customer Response

Acknowledged and will fix.

Fix Review

The issue is resolved in the recent commit 993fea5. As recommended, the computations
appearing above have been relocated to auxiliary methods

R FREETEEE) which perform them correctly without

causing unnecessary precision loss.

27

https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

Z“; certora

M-3 Precision loss issues: double decimal conversion

Severity: Medium Impact: Medium | Likelihood: Medium

Category: Arithmetic Files:
price_provider.rs

Description

The double conversion in L#41-#45 and L#56-#60 of price_provider.rs passes via Fixedl128
type (with fixed denominator 1€9) loses precision when the base asset decimals are >9:

median twap price
.mul int (amount)
.and then(|a| FixedIl28::from rational (a,
101128 .pow (config.asset decimals)))
.and then(la| a.to precision(.base asset.decimals))

.ok or (Error::InvalidAssetPrice)

median twap price
.recip mul int (amount)
.and then(|a| FixedIl28::from rational (a,
101128 .pow (.base asset.decimals)))

.and then(|a| a.to precision(config.asset decimals))

.0k or (Error::InvalidAssetPrice)

Recommendation

Convert the median_twap_price directly to the required precision.

Customer Response

Acknowledged and will fix.

Fix Review

The issue is resolved in commit 993feab.

28

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/types/price_provider.rs#L56-L60
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/types/price_provider.rs#L56-L60
https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

Z“; certora

M-4 Centralization Risk

Severity: Medium Impact: Medium | Likelihood: Medium
Category: Governance, Web?2 security Files:
Description

There is currently a single admin rule in the entire protocol which is allowed to do everything (e.g.,
upgrading the entire contract logic) but also required for fairly standard maintenance tasks (e.g.,
adjusting config parameters).

This is a dangerous situation from the point of view of web2 security which does not conform
with standard security and risk management principles like separation of duties and least
privilege access.

Recommendation

We recommend adding several less-privileged operational rules who will handle daily tasks like
updating config parameters etc and reserving the admin rule to contract upgrades. We further
suggest that all privileged rules would require multiple signatures.

Customer response

After adding RBAC to the protocol the compiled Wasm exceeded ~84KB (~74KB after Wasm
optimization) which is beyond the current Soroban threshold of the "Ledger entry size (including
Wasm entries) per Tx" (64 KB). So we had to revert it. We are planning to add RBAC after Soroban
increases its limits. But as of now, we will either use the existing Multisig solution for admin or
upgrade it in the future.

29

Z“; certora

M-5 There is no backup price feed

Severity: Medium Impact: Medium | Likelihood: Medium
Category: SEP-40 Oracle, Logic Files:
Description

Like many other DeFi protocols, Slender requires precise off-chain price data for many of its
critical functions (e.g., lending/borrowing, liquidations etc) which is accessed via an SEP-40
compatible oracle interface. However, it is by no means guaranteed that a given oracle feed
would remain functional and correct forever. Unfortunately, while still a rare event, oracle failures
are not unheard of. At best, unhandled oracle reverts can lead to a potential DoS. At worst, a
malfunctioning oracle which reports a bad price could spell a disaster for the protocol. Thus, it is
highly recommended for Slender to avoid putting all of its eggs in one basket by depending upon
the correctness of a single external entity for its function.

Recommendation

We suggest including a fallback oracle in the protocol.

Customer response

Acknowledged and will fix.

Fix Review

Resolved in commit 993feab.

30

https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

Z“; certora

M-6 There is no stale price check

Severity: Medium Impact: Medium | Likelihood: Medium
Category: SEP-40 Oracle, Logic Files:
Description

Slender does not check whether or not the information obtained via the SEP-40 oracle interface
is stale (i.e., it does not check if the timestamp field of the pricebata struct is sufficiently recent).

Exploit Scenario

There are numerous possible situations in which this mistake leads to unwanted behavior which
is bad for the protocol. For example, an attacker sets an automated script waiting for the
moment when Slender’s chosen SEP-40 oracle price update lags behind (e.g., due to outage).
When such an event occurs, the attacker exploits this by taking an under collateralized loan at an
incorrect price level, creating bad debt to the protocol.

Recommendation

Add a staleness parameter to the price feed config and logic to handle stale prices (when the
price returned by the primary oracle is stale, use the backup oracle).

Customer response

Acknowledged and will fix.

Fix Review

The commit 993feab resolves the problem by adding a configuration parameter

WERRRE AL ENIINCLIRE aNd a test for staleness:

if timestamp delta > config.min timestamp delta {

return Err (Error::NoPriceForAsset) ;

31

https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

Z“; certora

Remark - note that if the timestamp is stale the chosen solution is to return an error, so the
protocol would be unusable during such a time.

32

Z“; certora

M-7 The protocol lacks circuit breakers (such as min/max prices)

Severity: Medium Impact: Medium | Likelihood: Medium
Category: SEP-40 Oracle, Logic Files: price_provider.rs
Description

Many off-chain oracles (e.g., Chainlink) have internally configured min/max prices to prevent
spurious reading. This however can be problematic in rare extreme events (e.g., flash crash,
bridge compromise, or a stable coin depegging event). It is important for any lending/borrowing
protocol to be able to recognize such outliers and install “circuit breaker” logic which checks if
minAnswer <= reportedPrice <= maxAnswer.

Recommendation

Compute “sanity prices” off-chain and stop protocol action in cases of extreme price events.

Customer response
Acknowledged. Will fix

Fix Review
The issue is resolved in commit 993fea5 by adding min/max prices computed off-chain:

is sanity price = twap price >=

config.min sanity price in base

&& twap price <= config.max sanity price in base;

33

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/types/price_provider.rs
https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

Z“; certora

L-1Some configuration parameters lack input validation

Severity: Low Impact: Medium | Likelihood: Low
Category: Logic Files:
Description

The function is a setter for the struct

pub struct IRParams ({

pub alpha: u32,
pu
pu

pu

initial rate: u32,

max rate: u32,

I
b
k
Is

scaling coeff: u3Z,

The following checks are performed by (XU ERSSENERJE Rl b —

1. initial_rate<= PERCENTAGE_FACTOR

2. max_rate > PERCENTAGE_FACTOR

3. scaling_coeff <« PERCENTAGE_FACTOR
where PERCENTAGE_FACTOR = 10_000 (represents 100%). However, the following further checks
should be performed:

4. initial_rate <= max_rate

5. scaling_coeff > O

The function is a setter for the initial_health parameter which is treated as a
percentage in the code. However, there are no sanity checks to verify it is indeed between zero
and PERCENTAGE _FACTOR.

The function is a setter for the flash_loan_fee parameter which is treated as

a percentage in the code. However, there are no sanity checks to verify it is indeed between zero
and PERCENTAGE_FACTOR.

34

Z“; certora

In addition, all these checks need to be performed in (which is called upon pool
deployment).

The function||IRaR S IR gets as input the struct

PriceFeedConfigInput {

asset: Address,

asset decimals: u32,

feeds: Vec<PriceFeed>,

Where the elements of the feeds wvector are

feed asset: Orac
feed decimals: v
twap records: u32,

timestamp precision: TimestampPrecision,

and

From<Oracle!
from(asset:
match asset {

OracleAsset::Ste Asset::Stellar (address),

Oracle et -::0ther (symbol),

There are many obvious sanity tests that can be added here (e.g., between feed_asset and asset
etc).

35

Z“; certora

Recommendation

Add the extra sanity checks to validate the input of the setter functions and the initialize
function called at deployment. In addition, it might seem reasonable to have some safety (as
opposed to just sanity) boundaries in order to prevent some kind of a “fat finger error”.

The same is true for which does perform sanity checks but could
potentially benefit from some safety checks.

Customer Response
Acknowledged. Will fix.

Fix Review
commit 993fea5 adds the necessary checks.

36

https://github.com/eq-lab/slender/tree/993fea5cec171e6f9cb493be1fd2d0166c49e2bd

Z“; certora

I-1Some of the names for the variables are misleading

Severity: Informational Impact: Likelihood:

Category: Best Practice Files:
account_positions.rs

Description

In L#223-227 of account_positions.rs the computation of compound_debt is reusing the name
compound_balance:

compounded balance = debt coeff

.mul_ int (who debt)

.0k or (Error::CalcAccountDataMathError) ?;

debt balance in base = price provider.convert to base (&asset,

compounded balance) ?;

Recommendation

We suggest fixing it to improve the readability of the code.

Customer Response

Acknowledged and fixed.

37

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/account_position.rs
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/account_position.rs#L223-L227

Z“; certora

I-2 Replace 10i128.pow with 10i128.checked _pow

Severity: Informational Impact: Likelihood:
Category: Best Practice Files:
Description

The power operation used in the code is not protected against overflow.

Recommendation

We suggest replacing it with its checked variant.

Customer Response

Acknowledged and fixed.

38

Z“; certora

I-3 Some inline comments are inaccurate/outdated

Severity: Informational Impact: Likelihood:
Category: Best Practice Files: rate.rs
Description

The inline comments for the function state:

However this is not correct, as we an see from the code
num of iterations = if u > FixedI128::from rational(1l, 2)? ({

We either use a binomial approximation with five terms (when alpha<=1/2) or twenty-one (when
alpha>1/2).

39

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/utils/rate.rs

Z“; certora

Customer Response
Partially acknowledged - note that in the case where alpha<=1/2, we actually do use four terms
because we start from two in the cycle below. This was done for convenient tracking of terms.

The problem is more the naming convention since is actually not the real
number of iterations... will fix.

40

Z“; certora

I-4 Flash loan event sometimes include irrelevant info

Severity: Informational Impact: Likelihood:
Category: Best Practice Files: flash_loan.rs
Description

The event omitted in L#116 of flash_loan.rs
event::flash loan (
env,
who,
receiver,
&received asset.asset,

receivediasset.amount,

received asset.premium,

Includes the which is not charged in case the user choose to borrow
the assets following the flash loan (i.e., in this case the boolean invocation parameter borrow was

set to true) which is misleading.

Recommendation
Add the value of the borrow parameter to the emitted event. In case set

received asset.premium = 0f

Customer Response

Acknowledged and fixed.

41

https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/flash_loan.rs
https://github.com/eq-lab/slender/blob/93d1648170f0f7b7b45c7d6ddb0bbb2c62f9e085/contracts/pool/src/methods/flash_loan.rs#L116-L123

Z“; certora

About Certora

Certora is a Web3 security company that provides industry-leading formal verification tools and
smart contract audits. Certora's flagship security product, Certora Prover, is a unique SaaS
product that automatically locates even the most rare & hard-to-find bugs on your smart
contracts or mathematically proves their absence. The Certora Prover plugs into your standard
deployment pipeline. It is helpful for smart contract developers and security researchers during
auditing and bug bounties.

Certora also provides services such as auditing, formal verification projects,
and incident response.

42

